

Welcome to Kubernetes Concepts!

Contents:

	Prologue

	Introduction

	Containers
	Overview

	Container building blocks

	Docker

	Containers - Practical
	Use Cases

	Conclusion

	Kubernetes Overview
	Minikube

	Kubectl

	Running the HTTP Server

Indices and tables

	Index

	Module Index

	Search Page

Prologue

I have been working on Kubernetes for almost a year now and started
using Docker many years before that. I really think that
containers and Kubernetes are transformative technologies in the same
way that Virtualization has been a decade before.

The idea to write a guide about Kubernetes concepts came up when I
started preparing for a technical talk at Catalogic Software [https://www.catalogicsoftware.com] (where
I work). Instead of preparing usual slides and notes, I thought that
writing a guide beforehand and then giving the talk would be better.

There are many Kubernetes tutorials available on the web and the
Concepts [https://kubernetes.io/docs/concepts/] section on Kubernetes website is quite brilliant. However, I
haven’t found any systematic presentations where concepts are
introduced in an incremental fashion, starting all the way from
containers and then gradually moving onto Kubernetes features. Hence,
this guide. I hope developers find it useful.

If you have any comments or corrections, please send email to
“draghuram at gmail.com” or open an issue (or PR) at the github
repo [https://github.com/draghuram/kubeconcepts].

Introduction

Kubernetes is very much getting lots of love and mind share these
days. Here is how kubernetes.io [https://kubernetes.io/] defines the technology:

Kubernetes (K8s) is an open-source system for automating deployment,
scaling, and management of containerized applications.

But what does it exactly mean? It is certainly not an easy technology
to pick up and it really helps to understand the concepts behind its
design and implementation.

This guide is an attempt to explain the concepts in an easy to
understand and incremental fashion. I do assume that the reader is
reasonably familiar with Docker [https://docker.io/] and container concepts though I give
a high level overview in the first two chapters.

Also, all the examples and descriptions in the guide use Linux as that
is the operating system I am most comfortable with.

Containers

Kubernetes is a container orchestration platform so containers are
at the heart of the technology.

Overview

Containers are isolated groups of processes running on a single
host. They run directly on a host without any intermediate layer as
opposed to Virtual Machines [https://en.wikipedia.org/wiki/Virtual_machine] which require a Hypervisor [https://en.wikipedia.org/wiki/Hypervisor] to be
present. This is also the reason why containers are referred to as
a “light-weight” solution to deploy applications.

The most important point to note is the fact that container processes
run directly on the host. As can be seen in the following picture
(source: docker.com), there is no intermediate layer between kernel
and applications, as is the case with virtualization such as vmware [https://www.vmware.com/solutions/virtualization.html]
and VirtualBox [https://www.virtualbox.org/].

[image: _images/containers.png]
So if the container processes run directly on the host, what stops
them from seeing each other or even affecting each other? That is
where the isolation aspects of the kernel comes in. Kernel has
mechanisms to isolate or sandbox a process (or a group of processes)
to the point that the processes behave as though they are running on a
dedicated host. This is despite the fact that they are just normal
processes on the host and they can be seen from the host just like any
other processes (given sufficient permissions).

So Containerization is essentially creating an isolated environment
around a process or group of processes, limiting them in terms of what
they can see and what they can do.

Finally, it is important to understand that all containers share same
running kernel. There is no isolation there and that is another big
difference between Virtual Machines [https://en.wikipedia.org/wiki/Virtual_machine] and containers. A side
effect of sharing the kernel is that if the container uses a
kernel module or does something with a kernel module, there is no way
to isolate it from other containers (with some exceptions, see Kata
Containers [https://katacontainers.io/]).

Container building blocks

There are three kernel features - namespaces, cgroups, and
chroot, that work together to make containers possible. Docker and
other container tools mainly use these features to build container
solutions.

chroot

chroot is a system call that changes the root directory of a
process. Once that happens, the process will only be able to access
files that are reachable from the new root directory.

Namespaces

Namespaces allow partitioning of virtual system resources such as PIDs
and mounted file systems.

Here are some examples:

	PID

	Isolates process ID ranges so that processes in different
namespaces can have same PID.

	User

	Isolates UID and GID numbers. Especially useful to run as root
inside the container.

	UTS

	Provides isolation for host name and domain name.

Control groups (cgroups)

Control groups allow partitioning of physical system resources such as
CPU and memory.

They also allow limiting physical resources to a group of
processes. For example, if you want to limit a process to 100MB of
main memory even though the host has much larger memory, you can
easily do that using cgroups.

Docker

Containers existed in one form or another for very long
time. E.g. Solaris Zones [https://en.wikipedia.org/wiki/Solaris_Containers], lxc [https://en.wikipedia.org/wiki/LXC]. But Docker [https://www.docker.com/] brought the
technology to mainstream due to following reasons:

	Defined a simple and portable image format

	Made it easy to build new images

	Made sharing images a breeze (Docker Hub [https://hub.docker.com/])

Google has been using containers for long time. In fact, the initial
code for cgroups has been donated by Google. Since then, namespaces
were added to the mix and then “lxc” came along as a container
solution.

But the real popularity in the wide developer world started after
Docker came into the picture. The main reasons are the portable image
format and APIs.

For a good understanding of Docker, please see Docker Concepts [https://docs.docker.com/get-started/overview/].

In the next chapter, we will see a simple example of how to work with
Docker containers.

Containers - Practical

This section will continue the discussion of containers by focusing on
practical aspects of how to build images and run them.

We will start with a simple HTTP server and use it to demonstrate
Container and Kubernetes concepts throughout the guide.

Here is a very basic example taken from Flask Quickstart [https://flask.palletsprojects.com/en/1.1.x/quickstart/]:

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello, World!'

if __name__ == '__main__':
 app.run(host="0.0.0.0")

As can be seen, the server is very simple and implements a single end
point. Save the code in the file basicserver.py and you can then
run the server as follows (command output is not shown):

$ python3 -m venv ~/venv/flask
$ export PATH=~/venv/flask/bin:$PATH
$ pip install flask
$ python basicserver.py

The end point can be verified with curl.

$ curl http://localhost:5000
Hello, World!

So our little HTTP server is up and responding to requests. Note that
the server is running directly on the host.

As a next step, we will build a Docker image and run the server in a
container (instead of directly running on the host). Create a file
called Dockerfile in the same directory as basicserver.py with
the following contents:

FROM python:3

RUN mkdir /opt/app && \
 python3 -m venv /opt/venv && \
 /opt/venv/bin/pip install flask

COPY basicserver.py /opt/app

EXPOSE 5000/tcp

CMD ["/opt/venv/bin/python", "/opt/app/basicserver.py"]

You usually build images from existing images as we are doing here. We
are using python:3 as the base image on top of which we install
our application and configure some options. In this case, we are
installing Flask [https://flask.palletsprojects.com/en/1.1.x/] and copying our application code. The “EXPOSE”
directive indicates that the process in the container listens on
port 5000. Finally, we specify the command to execute when some one
“runs” the container.

Once we have a Dockerfile, we can build the container image and then
“run” it.

Build the container with name "basicserver" and tag "0.42"
This command must be run in the same directory that contains
"Dockerfile".
$ docker build -t basicserver:0.42 .

We are now ready to “run” the container.

$ docker run -p 5000:5000 --rm -it basicserver:0.42

“-p” option is to map the container port 5000 on to the host (so that
we can access it directly on “localhost”). You can map to any
available port, not just 5000. For information about other options,
check Docker Run [https://docs.docker.com/engine/reference/run/] reference.

At this point, the HTTP server is running and we can access it using
“curl” just like before.

$ curl http://localhost:5000
Hello, World!

Note that the way we access the server hasn’t changed but we are now
running it in a “container” instead of directly on a host. Imagine you
have a machine that has no Python or Flask installed. You can still
run the container using Docker and use the application. This is
possible because all the required components of the server
(e.g. Python and Flask) are packaged in the container image.

It is interesting to note that a container image is comparable to an
“executable” file such as ELF binary while the “container” can be
compared to a running process. Just like running a process involves
taking an executable file and creating a “process”, running a
container takes an image and creates a “container”.

You don’t need to build images yourself in order to use containers. In
many cases, you will be able to use images that are already available
at Docker Hub [https://hub.docker.com/].

Use Cases

There are many different scenarios where you can use containers. Here
are few interesting ones:

	Microservices

	Microservices are services that implement a small and well defined
interface. They are typically accessed using REST. Containers are
a perfect fit run microservices.

	Tools

	If you want to run a tool but don’t want to install it on your
machine, containers are the way to go. For example, I usually run
Jekyll [https://jekyllrb.com/] locally as follows, to check that my blog looks ok (my
blog [https://draghuram.github.io] is built using Jekyll [https://jekyllrb.com/]).

$ docker run -it --rm --volume=$(pwd):/srv/jekyll -it -p 4000:4000
 jekyll/jekyll jekyll s

	Exploring

	Say you are running Ubuntu and you want to check something out on
a Fedora [https://getfedora.org/] machine. You can simply run a container with Fedora
image, like so:

$ docker run -it --rm fedora bash

Conclusion

This concludes the discussion about containers in general and Docker
in particular. If you want to explore further, here are some useful
resources:

	Container image spec [https://github.com/opencontainers/image-spec]

	Container runtime spec [https://github.com/opencontainers/runtime-spec]

	Docker Concepts [https://docs.docker.com/get-started/overview/]

At this point, we have a Docker image for a simple and basic HTTP
server and we have seen how it can be run as a Docker container. In
the next chapter, we will see how we can deploy the same server in
Kubernetes.

Kubernetes Overview

In the last chapter, we built a Docker image of a simple HTTP server
and ran it as a container. We are now ready to enter the world of
Kubernetes and see how we can run the same server inside Kubernetes.

In a Kubernetes cluster, a “Pod” is the smallest unit that can be
deployed and run. It is essentially a container or a group of
containers. We will learn more about Pods and why they support group
of containers in later sections but for now, it is sufficient to
understand that a container is wrapped in a “Pod” to be run in a
Kubernetes cluster.

Before we take a deep dive into Kubernetes concepts, let us try to
understand what exactly is a “Kubernetes cluster”. The following
diagram shows Kubernetes components at a very high level.

[image: _images/kubearch.png]
A very concise overview of the architecture:

	Kubernetes is a cluster solution in that it manages multiple nodes
and can seamlessly run pods on any node.

	There is a master node that runs the components that “manage” the
cluster. These components are typically referred to as “control
plane” of the cluster. Note that it is possible to have more than
one master if you want to create highly available clusters but for
our discussion, we will assume there is a single master node.

	The remaining nodes are ‘worker” nodes that run pods. The
cluster components that run on the worker nodes are referred to as
“Node components”.

Typically, master node is dedicated to running control plane
components and workloads are not run there. But you can easily change
that and if you are using a one node cluster, you obviously need to do
that.

Here is a brief description of each component in a Kubernetes cluster.
We will learn more details about them in the coming chapters.

	API server

	API server is the front end to the cluster. It implements the
Kubernetes REST API. An important point is that the APIs are used
not only by external components but internal components as well
(though they may use a slightly different format of the API).

	Etcd

	Etcd is a distributed key-value store and is used by API server to
persist all resources.

	Scheduler

	Decides which node should run a newly created pod.

	Controller Manager

	Comprises of several different “controllers” that manage
Kubernetes resources such as nodes, pods, service accounts etc.

	Kubelet

	Runs on each node and makes sure that pods are running containers
as per the spec.

	kube-proxy

	Runs on each node. It implements the network semantics for the
cluster by forwarding traffic from one node to the other.

Now that we have a high level understanding of what Kubernetes is, we
need a test environment where you can run the commands and see the
cluster in action. There are many options when it comes to setting up
a test Kubernetes cluster. The easiest perhaps is to use Katacoda [https://www.katacoda.com/courses/kubernetes/playground]
but my personal preference is to install minikube [https://minikube.sigs.k8s.io/docs/] locally.

Minikube

Minikube creates a one node cluster that is very handy to test things
locally. It can install cluster components in several different ways.

	Directly on the host itself

	Using Docker

	Using VirtualBox VM

The recommended way is to use “Docker”, like so:

$ minikube start --vm-driver docker

Kubectl

To access the cluster we just created, we need kubectl [https://kubernetes.io/docs/tasks/tools/install-kubectl/] which is a
command line tool to manage and control Kubernetes clusters. If you
work with Kubernetes actively, you will be spending lot of time
running this command so it is very important and useful to master it.

Using kubectl, you can perform CRUD actions on all Kubernetes
resources. After installing minikube and kubectl, run the following
command to verify that the test setup is working:

$ kubectl -n kube-system get pod

NAME READY STATUS RESTARTS AGE
coredns-66bff467f8-mdr29 1/1 Running 0 5d19h
coredns-66bff467f8-rrxxd 1/1 Running 0 5d19h
etcd-test 1/1 Running 0 5d19h
kindnet-lnmg9 1/1 Running 0 5d19h
kube-apiserver-test 1/1 Running 0 5d19h
kube-controller-manager-test 1/1 Running 0 5d19h
kube-proxy-wp5pm 1/1 Running 0 5d19h
kube-scheduler-test 1/1 Running 0 5d19h
storage-provisioner 1/1 Running 0 5d19h

The command shows all the running pods in the namespace “kube-system”
(more about namespaces later). You can see some of the components we
discussed earlier such as etcd and apiserver in the listing above.

Running the HTTP Server

We are now ready to run our basic HTTP server in a Kubernetes
cluster.

First, we need to add the Docker image of our basic server (which we
built in the last chapter) to minikube cluster we just created:

$ minikube cache add basicserver:0.42

This step is only necessary for local images. If the image is
available in Docker Hub [https://hub.docker.com/] or in some other Docker registry, we don’t
need to explicitly add the image to the cache.

Let us now run the server:

$ kubectl run --image basicserver:0.42 testpod
pod/testpod created

$ kubectl get pod
NAME READY STATUS RESTARTS AGE
testpod 1/1 Running 0 4s

We can see that the HTTP server pod is running. However, even though
the server is running, it is not reachable from outside the cluster
yet. One simple way to fix this is to have “kubectl” forward traffic
from a port on the localhost to the server inside the cluster, like
so:

$ kubectl port-forward testpod 5000:5000
Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000

Once this forwarding is set up, we can reach the HTTP server from
localhost. We can easily verify that using the same curl command we
used in the previous chapter.

$ curl http://localhost:5000
Hello, World!

That’s it! We now managed to run our server in three different
environments - on the host directly, as a Docker container, and
finally in a Kubernetes cluster. But do note that the above commands
were only meant to get a pod up and running for some quick
testing. They are not the recommended way to create resources in a
Kubernetes cluster.

In the next chapter, we will learn all about pods and some other
abstractions that work with pods. In the process, we will also learn
some general concepts about Kubernetes resources and the recommended
way of creating and otherwise managing such resources.

More content is coming soon. Stay tuned!

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/containers.png
CONTAINER CONTAINER CONTAINER
Tomcat PHP

Java MySQL Static Binary

Debian Ubuntu Alpine

Kernel

_images/kubearch.png
Master (Control plane)

Controller
Manager

| v Kubelet Worker

API server

Scheduler

Etcd

> Kube-proxy

™ Kubelet Worker

N

Kube-proxy

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Kubernetes Concepts!

 		
 Prologue

 		
 Introduction

 		
 Containers

 		
 Overview

 		
 Container building blocks

 		
 chroot

 		
 Namespaces

 		
 Control groups (cgroups)

 		
 Docker

 		
 Containers - Practical

 		
 Use Cases

 		
 Conclusion

 		
 Kubernetes Overview

 		
 Minikube

 		
 Kubectl

 		
 Running the HTTP Server

_static/up-pressed.png

_static/up.png

